SESSION 2010

Filière MP (groupe I)

Épreuve commune aux ENS de Paris, Lyon et Cachan

MATHÉMATIQUES - INFORMATIQUE

Durée: 4 heures

Les calculatrices ne sont pas autorisées.

Le sujet porte sur la résolution de systèmes d'équations linéaires dans les entiers. La première partie traite de la résolution d'une équation dans \mathbb{Z} . La seconde partie étudie la résolution d'un système d'équations dans \mathbb{N} . La troisième partie porte sur le nombre de Frobenius. La quatrième et dernière partie est consacrée à l'étude d'une borne inférieure sur le nombre de Frobenius. Les quatre parties sont largement indépendantes. En particulier, la deuxième partie est indépendante des autres.

L'usage des calculatrices est interdit.

Préambule

 \mathbb{Z} représente l'ensemble des entiers relatifs, \mathbb{N} l'ensemble des entiers positifs, \mathbb{N}^* l'ensemble des entiers strictement positifs et \mathbb{R} l'ensemble des réels. Soient a,b,d des entiers relatifs, d non nul. On dit que d divise a s'il existe $k \in \mathbb{Z}$ tel que a = kd. Le plus grand diviseur commun de a et b, noté $\operatorname{pgcd}(a,b)$ est l'entier $d \geq 1$ tel que d divise a et d divise b et tel que pour tout diviseur d' de a et b, d' divise d. Plus généralement, étant donnés $a_1, \ldots, a_n \in \mathbb{Z}$, le plus grand diviseur commun des a_i , $1 \leq i \leq n$, noté $\operatorname{pgcd}(a_1, \ldots, a_n)$ est l'entier $d \geq 1$ tel que d divise chacun des a_i , $1 \leq i \leq n$, et tel que pour tout diviseur d' de chacun des a_i , d' divise d.

Si A est une matrice de taille $m \times k$, le coefficient (i,j), où i est l'indice de ligne et j l'indice de colonne, $1 \leqslant i \leqslant m$, $1 \leqslant j \leqslant k$, de la matrice A est noté $A_{i,j}$. Si u est un vecteur de taille k, la ième coordonnée de u, $1 \leqslant i \leqslant k$, est notée u_i . La matrice identité de taille $k \times k$ est notée I_k . Une matrice de taille $1 \times k$ pourra être appelée vecteur même si ses coefficients ne sont pas dans un corps.

Si A et B sont deux ensembles, on note $A \setminus B$ l'ensemble formé de A privé des éléments de B. Algorithmes : certaines questions demandent de donner un algorithme. Pour ces questions, on ne demande pas de fournir du pseudo-code mais de décrire l'algorithme en français. La question 2.5 illustre une présentation possible.

Partie 1 : Résolution d'une équation linéaire dans \mathbb{Z}

Étant donnés a,b deux entiers strictement positifs, on appelle reste de la division euclidienne de a par b, noté r(a,b) l'entier r tel que $0 \le r < b$ et a = kb + r pour un certain entier $k \in \mathbb{N}$. On rappelle que l'algorithme d'Euclide, permettant de calculer $\operatorname{\mathsf{pgcd}}(a,b)$, est défini à l'aide des suites (u_n) et (v_n) de la manière suivante :

- $-u_0 = a \text{ et } v_0 = b$
- Si $v_n \neq 0$, on définit $u_{n+1} = v_n$ et $v_{n+1} = r(u_n, v_n)$
- Si $v_n = 0$, alors l'algorithme s'arrête et renvoie u_n .

Question 1.1. Soit N l'indice tel que $v_N = 0$.

- (a). Montrer que $u_N = pgcd(a, b)$.
- (b). Montrer qu'il existe $p, q \in \mathbb{Z}$ tels que $u_N = ap + bq$.

Soient $a_1, \ldots, a_n \in \mathbb{Z}$, $b \in \mathbb{Z}$ des entiers relatifs. On dit que l'équation

$$a_1x_1 + \ldots + a_nx_n = b$$

a une solution dans \mathbb{Z} s'il existe $u_1, \ldots, u_n \in \mathbb{Z}$ tels que $a_1u_1 + \ldots + a_nu_n = b$.

Question 1.2. Soient $a_1, \ldots, a_n \in \mathbb{Z}$, $n \ge 2$ et $b \in \mathbb{Z}$. Soit $a' = \operatorname{pgcd}(a_1, a_2)$. Montrer que l'équation $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ a une solution dans \mathbb{Z} si et seulement si l'équation $a'x' + a_3x_3 + \ldots + a_nx_n = b$ a une solution dans \mathbb{Z} . En déduire que $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ a une solution dans \mathbb{Z} si et seulement si $\operatorname{pgcd}(a_1, \ldots, a_n)$ divise b.

En particulier, l'équation $a_1x_1 + a_2x_2 + \ldots + a_nx_n = \operatorname{pgcd}(a_1, \ldots, a_n)$ a toujours une solution dans \mathbb{Z} (théorème de Bézout).

Question 1.3. Proposer un algorithme qui prend en entrée une équation $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ et renvoie :

- "pas de solution" s'il n'y a pas de solution dans \mathbb{Z} ,
- donne une solution (dans \mathbb{Z}) lorsqu'il en existe une.

On supposera donnée une fonction $\operatorname{\mathsf{pgcd}}_{\operatorname{\mathsf{et}}}$ qui prend en entrée deux entiers $a,b\in\mathbb{N}$ et qui renvoie d,p,q tels que d=pa+qb et $d=\operatorname{\mathsf{pgcd}}(a,b)$.

Question 1.4. Trouver une solution dans \mathbb{Z} de l'équation $10x_1 - 15x_2 + 7x_3 = 3$.

Partie 2 : Base des solutions dans N d'un système d'équations linéaires

Soit A une matrice de taille $m \times k$ à coefficients dans \mathbb{Z} . L'ensemble des solutions dans \mathbb{N} de l'équation AX = 0, noté S(A), est l'ensemble des vecteurs $X \in \mathbb{N}^k$ tels que AX = 0. Une base de S(A) est un ensemble de vecteurs de \mathbb{N}^k tel que tout vecteur de S(A) s'écrive comme une combinaison linéaire à coefficients entiers positifs d'éléments de la base.

Étant donnés deux vecteurs $U, V \in \mathbb{N}^k$, on écrit $U \leq V$ si et seulement si $U_i \leq V_i$ pour tout $1 \leq i \leq k$.

Question 2.1. Montrer que la relation \leq est un ordre sur les vecteurs de \mathbb{N}^k .

On considère l'ensemble H(A) des solutions non nulles dans $\mathbb N$ de l'équation AX=0, minimales pour l'ordre \leqslant , c'est-à-dire

$$H(A) = \{ X \in S(A), X \neq 0 \mid (Y \in S(A) \text{ et } Y \leq X) \Rightarrow (Y = X \text{ ou } Y = 0) \}.$$

Question 2.2. Montrer que H(A) est fini.

Question 2.3. Montrer que H(A) est une base de S(A).

Question 2.4. Montrer que toute base de S(A) contient H(A).

On s'intéresse à la détermination de H(A). Une contrainte est un triplet formé d'une matrice M carrée de taille $k \times k$ à coefficients dans \mathbb{N} , d'une matrice A de taille $m \times k$ à coefficients dans \mathbb{Z} et d'un ensemble $I \subseteq \{1, \ldots, k\}$.

La contrainte associée à (M,A,I) est notée C(M,A,I). L'ensemble des solutions, noté Sol(C(M,A,I)), d'une contrainte C(M,A,I) est défini par

$$Sol(C(M, A, I)) = \{Mu \mid Au = 0 \text{ et } u \in \mathbb{N}^k \text{ et } \forall i \in I, \ u_i = 0\}.$$

Ainsi S(A) est l'ensemble des solutions de la contrainte $C(\mathsf{Id}_k, A, \emptyset)$. Par convention, on appellera matrice vide la matrice de taille $0 \times k$, notée ϵ . L'ensemble des solutions, noté $Sol(C(M, \epsilon, I))$, associé à $C(M, \epsilon, I)$ est défini par

$$Sol(C(M, \epsilon, I)) = \{Mu \mid u \in \mathbb{N}^k \text{ et } \forall i \in I, \ u_i = 0\}.$$

On dit qu'une contrainte C(M,A,I) est en forme résolue si A est la matrice vide. Étant donné un ensemble E de contraintes, l'ensemble des solutions de E est $Sol(E) = \bigcup_{C \in E} Sol(C)$.

On définit $L_{i,j}$ la matrice carrée telle que le coefficient (p,q) de $L_{i,j}$ vaut 1 si p=q ou si (p,q)=(i,j) et vaut 0 sinon.

Nous allons étudier un algorithme Transf décrit ci-dessous, qui transforme un ensemble de contraintes en un ensemble de contraintes en forme résolue.

```
Transf(E) = E \operatorname{si} \operatorname{po}
```

E si pour tout $C \in E$, C est en forme résolue.

Sinon, choisir $C(M, A, I) \in E$ qui n'est pas en forme résolue.

Si les $A_{1,i}, i \notin I$ ne sont pas tous de même signe,

 $\begin{array}{l} \textit{choisir } i,j \notin I \textit{ tels que } A_{1,i}A_{1,j} = \min_{p,q} A_{1,p}A_{1,q} < 0 \; ; \\ \textit{calculer Transf} \; (\; (E \setminus \{C(M,A,I)\}) \cup \{C(ML_{i,j},AL_{i,j},I),C(ML_{j,i},AL_{j,i},I)\} \;). \end{array}$

calculer Transf ($(E \setminus \{C(M, A, I)\}) \cup \{C(ML_{i,j}, AL_{i,j}, I), C(ML_{j,i}, AL_{j,i}, I)\}$). Sinon, soit $A_{1,*}$ la première ligne de A. On peut écrire A sous la forme $A = \begin{bmatrix} A_{1,*} \\ A' \end{bmatrix}$.

Soit $I'=I\cup\{j\mid A_{1,j}\neq 0\}.$ Calculer Transf $((E\setminus\{C(M,A,I)\})\cup\{C(M,A',I')\}).$

Question 2.5. Soit E un ensemble fini de contraintes. Montrer que $\mathsf{Transf}(E)$ renvoie toujours un résultat en un nombre fini d'étapes.

Question 2.6. Montrer que si E est un ensemble de contraintes et $\mathsf{Transf}(E) = E'$ alors Sol(E) = Sol(E').

Question 2.7. En déduire un algorithme pour déterminer H(A).

Question 2.8. Soit $A = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 1 & -3 \end{bmatrix}$. Déterminer H(A).

Partie 3 : Problème de Frobenius

Dans cette partie, on suppose que $a_1, \ldots, a_n \in \mathbb{N}$ sont des entiers positifs tels que $a_i \geq 2$, $1 \leq i \leq n$. On dit qu'un entier b est représentable comme une combinaison linéaire positive de a_1, \ldots, a_n s'il existe des entiers $x_i \geq 0$, $1 \leq i \leq n$, tels que $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$.

Question 3.1. Soit b un entier. Les deux propositions suivantes sont-elles équivalentes? Justifier la réponse.

- i) b est représentable comme une combinaison linéaire positive de a_1, \ldots, a_n .
- ii) $pgcd(a_1, \ldots, a_n)$ divise b.

Question 3.2. On suppose $\operatorname{pgcd}(a_1,\ldots,a_n)=1$. Montrer qu'il existe un entier N tel que pour tout entier $b\geqslant N$, b est représentable comme une combinaison linéaire positive de a_1,\ldots,a_n .

On suppose désormais que $\operatorname{pgcd}(a_1,\ldots,a_n)=1$. On note $g(a_1,\ldots,a_n)$ le plus grand entier non représentable comme combinaison linéaire positive de a_1,\ldots,a_n . Le nombre $g(a_1,\ldots,a_n)$ est appelé nombre de Frobenius.

Question 3.3. Soient $a, b \ge 2$, $\operatorname{pgcd}(a, b) = 1$. Soit T l'ensemble des entiers représentables comme une combinaison linéaire positive de a et b.

- (a). Montrer que $ab a b \notin T$.
- (b). Montrer que pour tout entier k, il existe $v_1 \in \mathbb{Z}$ et $v_2 \in \mathbb{N}$ tel que $v_2 < a$ et $k = v_1 a + v_2 b$.
- (c). Montrer que pour tout entier $i \geqslant 1$, $ab-a-b+i \in T$.
- (d). En déduire que le nombre de Frobenius associé à a et b est g(a,b)=ab-a-b.

Soient $a, b, c \in \mathbb{Z}$. On dit que a est congru à b modulo c, noté $a \equiv b \mod c$, s'il existe $k \in \mathbb{Z}$ tel que a = b + ck.

Question 3.4. Soient $a_1, \ldots, a_n \in \mathbb{N}$, $n \ge 2$ des entiers positifs. Pour tout $\ell \in \mathbb{N}$, on définit t_ℓ le plus petit entier positif congru à ℓ modulo a_n et représentable comme une combinaison linéaire positive de a_1, \ldots, a_{n-1} . Montrer que

$$g(a_1,\ldots,a_n) + a_n = \max_{\ell \in \{0,\ldots,a_n-1\}} \{t_\ell\}.$$

Si A et B sont deux parties de \mathbb{R}^d , l'ensemble A+B est l'ensemble des u+v avec $u\in A$ et $v\in B$. Si t est un réel, tA est l'ensemble des tu, $u\in A$. S'il existe un réel positif t tel que $\mathbb{R}^d=tA+B$, on définit le rayon couvrant de A par rapport à B par

$$\mu(A,B) = \inf\{t \in \mathbb{R}^+ \mid \mathbb{R}^d = tA + B\}.$$

On considère $L = \{(x_1, \dots, x_{n-1}) \mid x_i \in \mathbb{Z} \text{ et } \sum_{i=1}^{n-1} a_i x_i \equiv 0 \mod a_n \}$ et $S = \{(x_1, \dots, x_{n-1}) \mid x_i \in \mathbb{R}, x_i \geqslant 0 \text{ et } \sum_{i=1}^{n-1} a_i x_i \leqslant 1 \}.$

Question 3.5. Montrer que $\mathbb{Z}^{n-1} \subseteq (g(a_1,\ldots,a_n)+a_n)S+L$.

Question 3.6. Montrer que $\mu(S, L)$ existe et que $\mu(S, L) \leq g(a_1, \dots, a_n) + a_1 + \dots + a_n$.

Question 3.7. Montrer que $g(a_1, \ldots, a_n) + a_n$ est le plus petit réel positif t tel que tS + L contienne \mathbb{Z}^{n-1} .

Question 3.8. Montrer que $\mu(S, L) = g(a_1, \ldots, a_n) + a_1 + \cdots + a_n$.

Partie 4 : Dénumérants et borne inférieure sur le nombre de Frobenius

On considère $a_1, \ldots, a_n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$ des entiers strictement positifs. Le dénumérant $d(m, a_1, \ldots, a_n)$ est le nombre de solutions dans \mathbb{N} de l'équation $\sum_{i=1}^n a_i x_i = m$, c'est-à-dire le cardinal de l'ensemble

$$\{(x_1, \dots, x_n) \mid x_i \in \mathbb{N} \text{ et } \sum_{i=1}^n a_i x_i = m\}.$$

On considère la fonction $f:]-1,1[\to \mathbb{R}$ définie par

$$f(x) = \frac{1}{(1 - x^{a_1})(1 - x^{a_2}) \cdots (1 - x^{a_n})}.$$

Question 4.1. Montrer que f est développable en série entière et que son développement est $f(x) = \sum_{i=0}^{\infty} d(i, a_1, \dots, a_n) x^i$.

Question 4.2. Donner une formule explicite pour d(m, 1, 2).

On suppose désormais fixés $a_1,\ldots,a_n\in\mathbb{N}^*$ des entiers strictement positifs.

Étant donnés $b_1, \ldots, b_n \in \mathbb{N}$, on considère $B(b_1, \ldots, b_n)$ le rectangle n-dimensionnel formé de l'ensemble des points $x \in \mathbb{R}^n$ tels que $b_i a_i \leq x_i < (b_i + 1)a_i$. Étant donné $r \in \mathbb{R}^+$, on considère la pyramide P(r) formée de l'ensemble des vecteurs $x \in (\mathbb{R}^+)^n$ tels que $x_1 + \cdots + x_n \leq r$.

Question 4.3. Montrer que $P(m) \subseteq \bigcup_{b_1a_1+\cdots+b_na_n \leq m} B(b_1,\ldots,b_n)$.

On définit $d'(m,a_1,\ldots,a_n)=\sum_{i=0}^m d(i,a_1,\ldots,a_n)$, le nombre de solutions dans $\mathbb N$ de l'inégalité $\sum_{i=1}^n a_i x_i \leqslant m$.

On pose $p_n = \prod_{i=1}^n a_i$ et $s_n = \sum_{i=1}^n a_i$.

Question 4.4. Montrer que $\frac{m^n}{n!p_n} \leq d'(m, a_1, \dots, a_n) \leq \frac{(m+s_n)^n}{n!p_n}$.

On pose $g_n = g(a_1, \ldots, a_n)$.

Question 4.5. On considère la fonction $f:]0, +\infty[\to]0, +\infty[$ définie par $f(y) = \frac{(y+g_n+s_n)^n}{y}$. Montrer que $f(y) > n!p_n$.

Question 4.6. Montrer que $g(a_1, ..., a_n) \ge \frac{n-1}{n} ((n-1)! \prod_{i=1}^n a_i)^{\frac{1}{n-1}} - \sum_{i=1}^n a_i$.

Fin de l'épreuve.